
Products > RF ICs/Discretes > RF ICs > Silicon Amplifiers, Gain Blocks > MSA-0486

MSA-0486

>6V Fixed Gain, 12 dBm General Purpose Amplifier

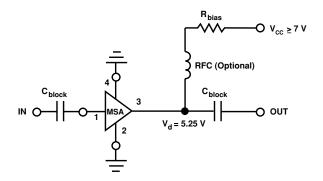
MSA-0486 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0486 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz $f_T, 25~{\rm GHz}~f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.$


Features

- Lead-free Option Available
- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 3.2 GHz
- 8 dB Typical Gain at 1.0 GHz
- 12.5 dBm Typical P_{1 dB} at 1.0 GHz
- Unconditionally Stable (k>1)
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available

86 Plastic Package

Typical Biasing Configuration

MSA-0486 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]	
Device Current	85 mA	
Power Dissipation ^[2,3]	500 mW	
RF Input Power	+13 dBm	
Junction Temperature	150°C	
Storage Temperature	-65 to 150°C	

Thermal Resistance^[2,4]: $\theta_{jc} = 100^{\circ} C/W$

otes: Permanent damage may occur if any of these limits are exceeded.

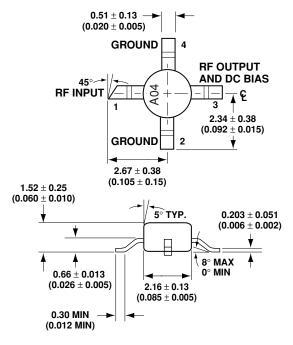
 $T_{\rm CASE}$ = 25°C.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: \mathbf{I}_{d} = 50 mA, \mathbf{Z}_{0} = 50 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB		8.3	
		f = 1.0 GHz		7.0	8.0	
ΔG_P	Gain Flatness	f = 0.1 to 2.0 GHz	dB		± 0.6	
$f_{3 dB}$	3 dB Bandwidth		GHz		3.2	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.5:1	
	Output VSWR	f = 0.1 to 3.0 GHz			1.9:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		7.0	
P1 dB	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		12.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		25.5	
tD	Group Delay	f = 1.0 GHz	psec		140	
Vd	Device Voltage		V	4.2	5.25	6.3
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

1. The recommended operating current range for this device is 30 to 70 mA. Typical performance as a function of current is on the following page.


Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0486-BLK	100	Bulk
MSA-0486-BLKG	100	Bulk
MSA-0486-TR1	1000	7" Reel
MSA-0486-TR1G	1000	7" Reel
MSA-0486-TR2	4000	13" Reel
MSA-0486-TR2G	4000	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

Derate at 10 mW/°C for $T_{\rm C} > 100^\circ \rm C.$

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

